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1. Introduction

In several situationss the control of a surface tem-

perature is ensured by convective exchange; for exam-

ples for steel metallurgy or electronic components. And

among the three types of convective exchanges, forced

convection is often used because of its efficiency. A

contrario natural convection has the advantage to be free

in terms of energy expense but generates low heat

transfer coefficient. Thus it will be interesting to improve

free convection heat transfer in order to substitute for

the expensive forced convection.

Laminar free convection problem on a vertical wall

has been plentifully investigated considering a wall heat

flux density constant [1–3] or varying sinusoidally [4]. But

only two studies deal with the influence of the different

parameters of the problem. Thereby Yang et al. [4]

evaluated the influence of the amplitude and of the fre-

quencies of the sinusoid whereas the Vargas and Bejan [5]

study is based on the optimisation of heat transfer.

This last investigation considers a fluid (water) ini-

tially at rest before being suddenly put in motion thanks

to a periodical heat flux density applied to the wall. Scale

analysis, numerical and experimental studies have been

carried out and show that the heat transfer is optimised

when the heating and cooling (wall adiabatic) periods

are equal.

In this paper the wall is subjected to a uniform heat

flux density until the steady states (thermal and dy-

namical) are reached. Then a periodical heat flux density

which varies from qw to 0 (adiabatic wall) is applied to

the surface in order to improve the free convection heat

transfer. A parametric study is then carried out in order

to optimise the heat transfer.

2. Modelling

Consider that the fluid in contact with the vertical

surface has initially reached its steady states (thermal

and dynamical). At time t ¼ 0 the wall is subjected to a

uniform periodical heat flux density qwðtÞ, which can be

divided into several identical cycles. During one cycle,

e.g. from t ¼ 0 to tc (Fig. 1), the wall is supposed to be:

• adiabatic (e.g. qw ¼ 0) during the dimensionless pe-

riod Pa,

• heated (heat flux density qw) during Ph.

According to Cebeci [6] in transient regime the velocity

profiles are nonsimilar, nevertheless differential method

can be used for convenience in numerical work; the

dependence on x is not eliminated but reduced.

The use of the differential method implies the exis-

tence of a stream function w, defined such as U ¼ ow=oy
and V ¼ �ow=ox . The dimensionless temperature and

velocity expressions must then be considered varying

with two variables in space ðX ; gÞ and one in time ðtþÞ,
as follows:

F 0ðX ; g; tþÞ ¼ U
U 0ðxÞ ¼

x

mGr�2=5
x

U

and

hðX ; g; tþÞ ¼ kGr�
1=5

x

qwx
ðT � T1Þ; ð1Þ

where Gr�x ¼ gbqwx4=km2 is the modified Grashof num-

ber, and X ; g and tþ are obtained using the classical di-

mensionless transformed variables of the differential

method (see [3]):

X ¼ x
L
; g ¼ y

x
Gr�

1=5

x ; tþ ¼ U 0ðxÞ
x

; t ¼ mt
x2
Gr�

2=5

x :

ð2Þ

Laminar boundary layer system of equations [7]

becomes using the dimensionless variables (1) and (2):
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In equations above the symbol ‘‘ 0’’ denotes differentia-

tion with respect to g.

At tþ < 0, the flow has reached its steady states

(thermal and dynamical) while the dimensionless

boundary conditions are when tþ P 0:

X P 0 : F ¼ F 0 ¼ 0; h0 ¼ constant on g ¼ 0;

F 0 ¼ h ¼ 0 when g ! 1: ð4Þ

System of Eq. (3) subjected to the boundary conditions

(4) is resolved using the implicit, iterative, tri-diagonal

finite-difference method known as the Keller-box meth-

od. This method has proven to be successful to get ac-

curate results to resolve two-dimension, three-dimension,

steady and transient systems [6,8,9]. Moreover, as Cebeci

advocates the box method removes the singularity that

the physical coordinates have at x ¼ 0 [9].

This method has been validated for this problem by

comparing transient values with results known as the

reference ones [10], in a step heat flux density problem

(see [3]).

A nonuniform grid distribution (Tchebyshev) in the g
direction with a small initial step size is used to accom-

modate steep changes in the velocity and temperature

gradients in the immediate vicinity of the wall. In the X
and tþ directions, uniform distribution grid has been used.

A convergence criterion based on the relative differ-

ence between the current and the previous iterations is

utilised. When this difference reaches 10�5, the solution

is assumed converged and the iteration procedure is

terminated.

3. Parametric study

3.1. Boundary layer conditions verification

To verify if the boundary layer conditions, used to

simplify the free convection governing equations, are

still correct when periodical heat flux density is applied

to the wall, comparison between the different terms of

system (3) has been done.

Thereby by comparing the velocities U, and V, their

derivates and the different temperature gradients, we

note that the boundary layer conditions are valid if the

fluid considered has Pr ¼ Oð1Þ or Pr 
 1, e.g. when the

thermal boundary layer thickness is inferior or equal to

the dynamical one.

On the other hand for more viscous fluids, e.g.

Pr � 1, the longitudinal velocity U is still higher than the

orthogonal one V but not enough to consider U � V .

Therefore only the case where the fluid in contact with

the surface is air ðPr ¼ 0:7Þ is considered in this paper.

3.2. Effect of the period

The computations have been carried out for a mod-

ified Grashof number equal to 1:01 � 107 in order to let

Nomenclature

c cycle number

h heat transfer coefficient, W m�2 K�1

hþ dimensionless heat transfer coefficient

n period rate

q heat flux density, W m�2

tþ dimensionless time

DT transient duration, S

Gr� modified Grashof number

L plate length, M

P period

Pr Prandtl number

T temperature, K

U ; V longitudinal and orthogonal velocities, M

U 0 velocity reference, m s�1

X dimensionless longitudinal coordinate

Greek symbols

b fluid dilatability, K�1

g dimensionless orthogonal coordinate

k thermal conductivity, W m�1 K�1

m kinematic viscosity, m 2 s�1

h dimensionless temperature

w stream function

Subscripts

a adiabatic

h heat

w wall

1 ambient fluid

Fig. 1. Periodical heat flux density.
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the regime flow laminar. Moreover adiabatic and heated

periods are linked such as:

Ph ¼ nPa: ð5Þ

At last to distinguish easily any heat transfer improve-

ment due to periodical heat flux density, the heat

transfer coefficient has been averaged on time from tþ ¼
0 to DT , as follows:

hðxÞ ¼ 1

DT

Z DT

0

hðx; tÞdt; ð6Þ

where DT is chosen equal to 10.25 s to let the flow reach

its steady state whatever the period applied to the wall.

As can be seen in Fig. 2, for the same adiabatic pe-

riod Pa, the heat transfer improves when the period rate

n gets lower. When the heating period is half of the

adiabatic one ðn ¼ 0:5Þ the average heat transfer

increases by 35%, whereas for n ¼ 2 heat transfer de-

creases from about 20%.

Not shown in Fig. 2 is that for n ¼ 1 and Pa ! 0 the

average heat transfer h tends to the steady value

h ¼ 4:25 W m�2 K�1.

Thereby to improve heat transfer you must let time to

the surrounding fluid to refresh itself during the adia-

batic period before applying a new heating period Ph at

the wall ðn6 1Þ.
Thus the heat transfer is optimum if the adiabatic

period is inferior or equal to the heated one and if the

period rate is small.

4. Effect of cycle numbers

Heat transfer coefficient after different cycle numbers

and for several period rates n is presented in Fig. 3. Note

that Fig. 3 is not a classical y ¼ f ðxÞ representation.

The heat transfer coefficient is optimised when the

period rate n is low, and after several heat flux cycles e.g.

when the steady state is reached. When period rate n

tends to infinity, e.g. Ph ! 1; the cycle numbers have no

more influence and the heat transfer coefficient is equal

to the steady value h ¼ 3:21 W m�2 K�1 (for uniform

heat flux step problem [10]). On the other hand when

n ! 0, or Ph ! 0, and steady state is reached (e.g. c !
1) h tends to infinity.

Thus the more flow is disrupted by the periodical

heat flux density, the more heat transfer coefficient is

improved.

5. Conclusion

We have investigated in this paper how free convec-

tive heat transfer can be optimised when a periodical

heat flux density is applied to a vertical surface. The

boundary layer equations, which are valid only for low

viscous fluids, are resolved using differential and Keller-

box methods. Investigation on the influence of the pe-

riod rate n, of the adiabatic period Pa, and of the cycle

numbers c was then carried out.

It was found that for low period rate ðn6 1Þ and

large cycle numbers (e.g. when steady state is reached)

heat transfer coefficient gets its optimal value. It was

also shown that for a same period rate n the average heat

transfer coefficient is maximum if the adiabatic period is

large.

Thus the heat transfer is optimum when the vertical

plate is more refreshed than heated and when the flow is

disrupted by the periodical heat flux density.
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Fig. 2. Average heat transfer coefficient h vs adiabatic period

for different period rates n, Pr ¼ 0:7, Gr�x ¼ 1:01 � 107.

Fig. 3. Heat transfer coefficient vs period rates n after different

cycles heat flux c, Pr ¼ 0:7, Gr�x ¼ 1:01 � 107.
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